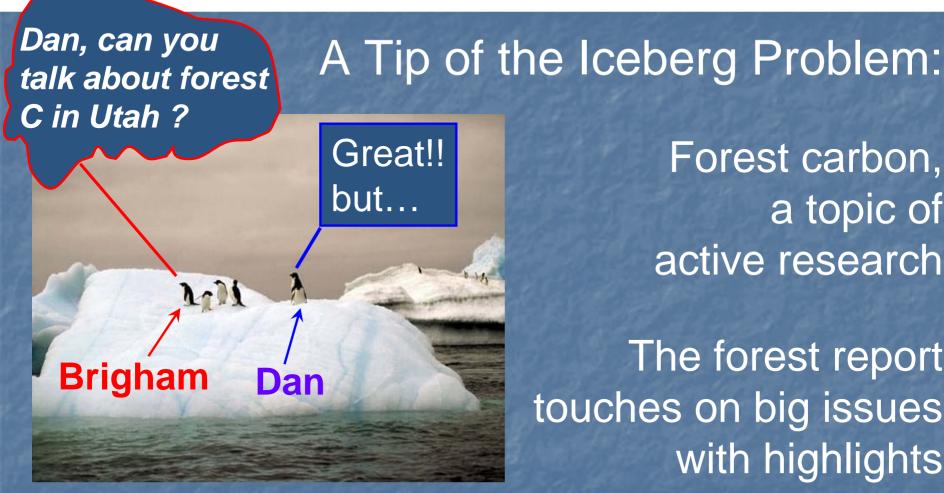
The Carbon Budget of Utah's Forests


What is the carbon sink of Utah's forest land?

Dan Richter

Teaching soils and forest ecology at Duke University & University of Michigan

Throughout career, scientific research on carbon

Motivated by interdisciplinary science, such as the Utah carbon sink: A question that involves biology, chemistry, physics, ecology, economics, society, & history

Forest carbon, a topic of active research

The forest report touches on big issues with highlights of big issues here

Acknowledgements

To Utah's USFS FIA field-teams & data analysts for over 60 years

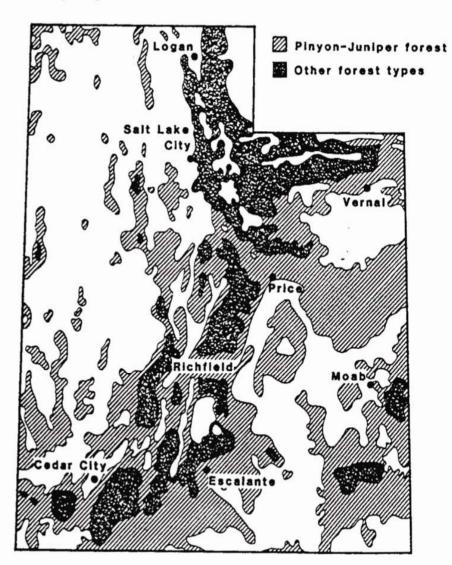
To CCS for making Utah's first state-wide estimates of the Utah forest sink

Why is the land important to carbon?

Some landscapes carbon sources: deforested tropical forests

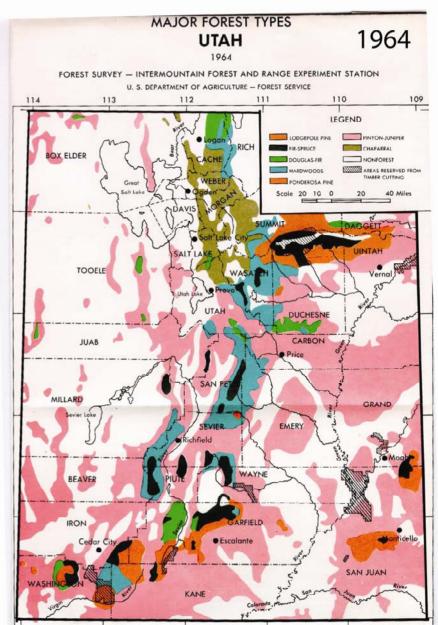
Others landscapes are carbon sinks: regrowing temperate zone forests

Globally, sources exceed sinks, <u>but</u> both are comparable to industrial emissions!


At the risk of getting ahead of the story, ecologists & foresters see Utah landscapes as carbon sink

Due to a history of land use, forests are increasing in area & in woody biomass

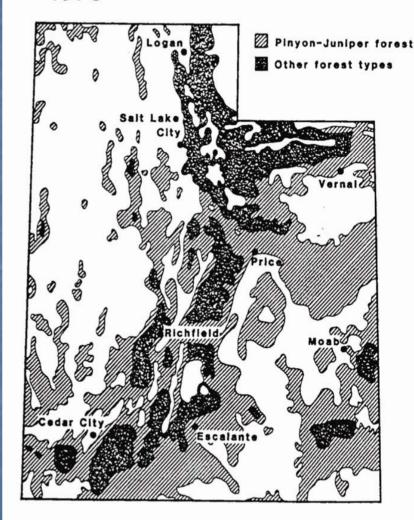
Utah's forests are extensive:


>15 million acres

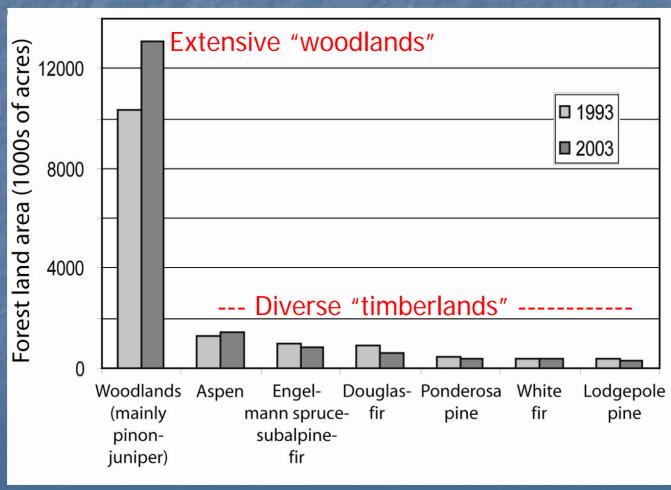
1978

Utah's forests are diverse:

many contrasting forest ecosystems



Utah's forests are dynamic:


"It is hard to imagine how dynamic Utah's forests and rangelands have been during the last 150 years.."

Major changes in area, tree species, and stand structure

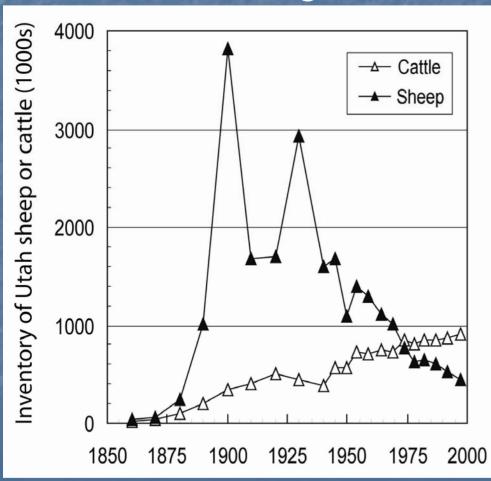
1978

Utah's forest dynamics are a tale of two forests: woodlands & timberlands

Carbon & Utah's tale of two forests

Woodlands:

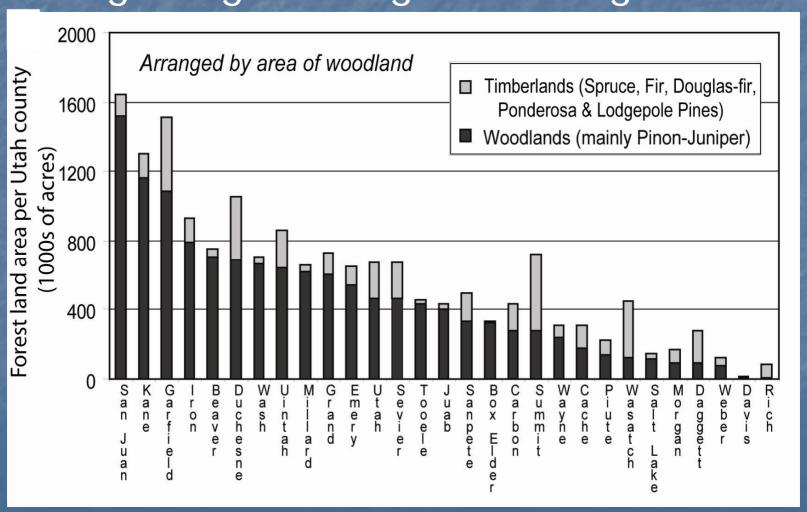
Little FIA data

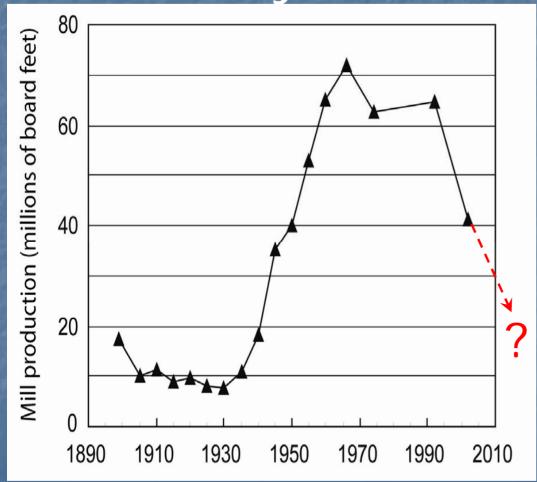

Relatively young forests, & expanding in area but at unknown rates

Timberlands:

Uncertain FIA data

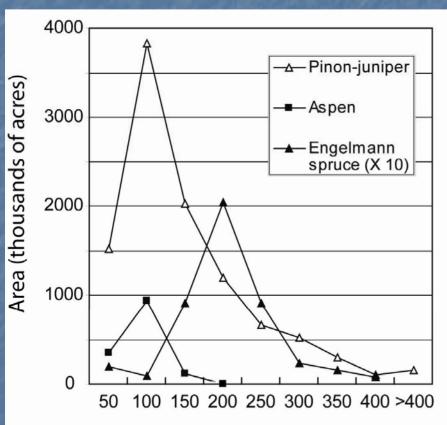
Six contrasting ecosystems with histories of logging, pests, & disease

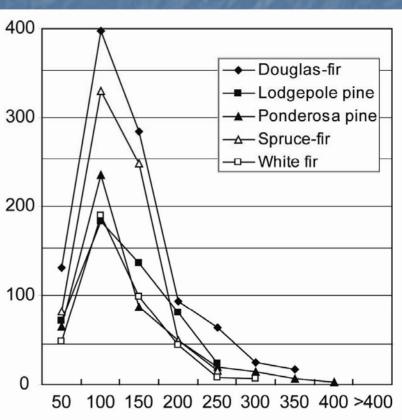

The story of Utah woodlands


Woodlands expanding:

Grazing diminished fine fuels promoting drought-hearty woody plants in native grasslands & sagebrush

Today's woodlands, a legacy of grazing & change in fire regimes


The story of Utah's timberlands



Logging peaked post-WWII with uncertain future;

Logging history left a legacy of stand regeneration

Many Utah forest stands are young, <100 yr

Stand age classes (0 to 50 yr, 50 to 100 yr, etc)

FIA in 1993 & 2003 concludes wood is accumulating in Utah forests

Tree species	1992	2006	
	milli	ons ft ³	
Ponderosa pine	10.7	7.4	In other words,
Lodgepole pine	5.0	10.5	wood is 50%
Engelmann spruce	13.9	11.8	carbon, & Utah
Douglas-fir	20.0	4.6	forests are a
True firs	- 2.7	- 4.7	carbon sink.
Aspen	31.7	30.0	
Utah total	78.6	59.6	

Earlier CCS estimates (2007) suggest carbon sink of 12 to 38 MMtons of CO₂-eq per year

- But details of reports create questions:

 Why is forest area so high?

 How is timberland a carbon source?

 Is it ecologically possible for largest carbon sink to be in soil not biomass?
- An opportunity for a new approach to carbon sink

New approach: to make a series of estimates

- Rather than re-do CCS approach (refeeding FIA data into USFS carbon models)
- We used FIA data more directly varying forest land area & sink strength per area

Woodlands carbon sink

Approach	Sink	Comments
	MMg C y-1	新发生的一种产生的一种产生的
1. Lower bound	0.54	Increment of 0.25 MgC ha ⁻¹ y ⁻¹ on
2. Age-class		5.35 million acres <100-y old
<150-y, 1993 area	1.04	Increment of 0.35 MgC ha ⁻¹ y ⁻¹ on
		7.37 million acres <150-y old
<150-y, 2003 area	1.33	Increment of 0.35 MgC ha ⁻¹ y ⁻¹ on
		9.37 million acres <150-y old
<150-y, 2003 area	1.90	Increment of 0.5 MgC ha ⁻¹ y ⁻¹ on 9.37
		million acres <150-y old
3. Upper bound	2.65	Increment of 0.5 MgC ha ⁻¹ y ⁻¹ on 13.1
	6/45	million acres

Timberlands carbon sink

Approach	Sink MMg C y-1	Comments
1. Lower bound		
2003 net ann growth	0.40	Net annual growth of 59.6 million ft ³ ; with 0.4 Mg m ³ and 15% root growth
2. Age-class		
1993 net ann growth	0.53	Net annual growth of 78.6 million ft ³ ; with 0.4 Mg m ³ and 15% root growth
<100-y, 1993 area	1.06	Live tree increment (Smith et al. (2006) for 3.04 million acres of <100-y
<150-y, 1993 area	1.32	Live tree increment from Smith et al. (2006) for 4.53 million acres <150-y
3. Upper bound	1.48	Increment of 0.75 MgC ha ⁻¹ y ⁻¹ on 4.87 million acres of timberlands

Estimated Utah forest carbon sink

- 8.75 MMton y⁻¹, with upper & lower bounds of 3.4 to 15.1
- Generally lower than CCS estimates of 12 to 38 MMt y⁻¹, which CCS judged to be high

Though forest carbon sink may be lower than previous estimates, forest land sink is very important

- Carbon sinks active research area
- Carbon sink of woodlands is particularly vulnerable to loss from wildfire, conversion to grasslands, invasions of exotic grass

Returning to a story suggested earlier in talk

- Contemporary forest carbon sink owes much to land use history
- Contemporary questions involve the extent to which land management can intervene with historical forces

Important to simultaneously improve the science, management, & policy of landscape's carbon sink.

How effective can management carbon sink in the face of woodland expansion, insect and disease attacks, drought mortality, wildfire risks, and grassland restoration?